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Generating neural circuits that implement probabilistic reasoning
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We extend the hypothesis that neuronal populations represent and process analog variables in terms of
probability density functions~PDFs!. Aided by an intermediate representation of the probability density based
on orthogonal functions spanning an underlying low-dimensional function space, it is shown how neural
circuits may be generated from Bayesian belief networks. The ideas and the formalism of this PDF approach
are illustrated and tested with several elementary examples, and in particular through a problem in which
model-driven top-down information flow influences the processing of bottom-up sensory input.
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I. INTRODUCTION

A. Fundamental hypothesis

In this work we elaborate upon the proposition@1# that
neural populations encode and process information ab
analog variables in the form of probability density functio
~PDFs!. As demonstrated elsewhere@2#, explicit representa-
tion of probabilistic descriptors of the state of knowledge
physically relevant variables subserves a powerful strat
for modeling neural circuits. By exploiting mathematic
tools developed within the theory of Bayesian inference,
can establish general procedures for building and un
standing models of cortical circuits that carry out well-pos
information-processing tasks.

Systems based on probabilistic frameworks provide
number of strong conceptual advantages. Importantly, a n
ral assembly encoding the joint probability density over r
evant analog variables can in principle answer any prob
listic question about these variables. Further,
implementing the Bayesian rules of inference, a probabili
formulation provides a direct and consistent means to d
with changing sources of evidence in the system.

Motivated by these facts, we shall now extend the P
hypothesis by devising methods for embedding joint pr
abilities into neural networks. This will enable us to co
struct neural circuit models that pool multiple sources
evidence, such as sensory inputs and any evolutionarily
termined priors on the joint distribution. More specifical
we will focus on developing neural networks that u
‘‘bottom-up’’ sensory inputs to build an internal model of th
data, which in turn uses ‘‘top-down’’ signals to impose gl
bal regularities on the sensory data. In the resulting ne
networks, there will naturally arise distinct feedforwar
feedback, and lateral connections, analogous to the ne
pathways observed in the anatomy of the cerebral cortex@3#.

Our treatment is based on Bayesian belief networks@4,5#,
graphical representations of probabilistic models that prov
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an efficient means for organizing the relations between
random variables of a given model. The resulting neural n
works will have several properties of Bayesian belief n
works, as well as more typical neural-network properties,
we will call them neural belief networks. Bayesian belief
network have been previously utilized in the genesis of c
tain neural networks@6,7#, although with different methods
for generating the neural-network architecture and dynam

B. Three levels of representation

In the context of the PDF hypothesis@8#, we assert that a
physical variablex is described by a neural population
time t in terms of a PDFr(x;t), rather than as a single
valued estimatex(t). In general, we consider a PDF de
scribed at timet in terms of a set ofD time-dependent pa
rameters$Am%. One possible description is suggested
linear decoding rules, which have been shown to be adeq
in some situations@9,10#, leading to PDFs represented as

r~x;t !5 (
m51

D

Am~ t !Fm~x!. ~1!

The basis functionsFm(x) are orthonormal functions which
serve to define the PDFs that the neural circuit can repres
but the amplitudesAm(t) cannot be interpreted as neuron
firing rates due to their arbitrarily high precision and the
ability to take on negative values. Therefore, we introduce
additional representation of the PDF in terms of firing ra
ai(t) and decoding functionsf i(x) assigned toN neurons,
so that

r~x;t !5(
i 51

N

ai~ t !f i~x!. ~2!

Unlike the basis functionsFm(x), the decoding functions
f i(x) form a highly redundant, overcomplete representat
(N@D) suitable for use with neuronal units having biolog
cally realistic precision~typically some 2–3 bits@11#!.
©2003 The American Physical Society12-1
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BARBER, CLARK, AND ANDERSON PHYSICAL REVIEW E68, 041912 ~2003!
The abstract representation defined by Eq.~1! will under-
lie the representation in the neuron space defined by Eq.~2!.
This allows us to deal with the issue of how PDFs can
precisely implemented in populations of neurons by focus
on the mapping between the minimal space and the spac
neurons@2#. Thus, neural belief networks can be develop
in the theoretically convenient abstract representation,
then be implemented in more realistic networks of lo
precision model neurons. Adopting the terminology of Zem
et al. @12#, we denote the set of physical variables as
implicit spaceand the measurable quantities as theexplicit
space. Extending their nomenclature, we denote the abst
space of Eq.~1! as theminimal space. The explicit space of
neurons constitutes a biological implementation of the
sired computations in the implicit space, while the minim
space, whose properties are more conducive to formal an
sis, provides a valuable bridge between the two other spa

We have developed rules to transform between repre
tations in the three spaces@2#. Equations~1! and ~2! respec-
tively define how to transform representations in the minim
and explicit spaces into a representation~PDF! in the implicit
space. With the remaining rules~summarized below!, we can
readily switch between the three representations and
proach any task in the most appropriate space.

For the orthonormal basis$Fm(x)%, the minimal space
coefficientsAm(t) are found using the encoding rule

Am~ t !5E Fm~x!r~x;t !dx. ~3!

The coefficients in the explicit space, i.e., the neural fir
ratesai(t), cannot be found in this direct fashion. We utiliz
a set of encoding functionsf̂ i(x) and an encoding rule of th
form

ai~ t !5 f XE f̂ i~x!r~x;t !dxC. ~4!

This explicit-space encoding rule is patterned after the ne
responses associated with the population vector of G
gopouloset al. @9#. The activation functionf in general is
nonlinear, and serves to prevent negative firing rates.
possible choice forf is rectification, i.e.,f (x)5x for x.0
and f (x)50 otherwise; we make use of rectifying activatio
functions throughout this work.

To relate the explicit and minimal spaces, we express
encoding and decoding functions in terms of the orthonor
basis, so that

f i~x!5 (
n51

D

kn iFn~x!, ~5!

f̂ i~x!5 (
n51

D

k̂ inFn~x!. ~6!

It can be shown that the transformation coefficientskn i and
k̂ in also relate theAm(t) andai(t), such that

An~ t !5(
i 51

N

kn iai~ t !, ~7!
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ai~ t !5 f S (
n51

D

k̂ inAn~ t !D . ~8!

The formal relations between the three spaces are il
trated in Fig. 1.

C. Obtaining the representation

Using Eqs.~2!–~8!, we can transform between represe
tations in the explicit, implicit, and minimal spaces using t
encoding functionsf̂ i (x) , the decoding functionsf i(x), and
the associated transformation coefficientskn i and k̂ in . We
present here a brief discussion of how to determine th
functions and coefficients. Methods for their explicatio
have been developed and presented in greater detail
previous paper@2#, which includes a discussion of the effe
of the dimensionalityD of the minimal space. The metho
we present here is not unique, and could be modified, e.g
using a different error measure than that in Eq.~9! to derive
the decoders.

Consider a known ‘‘target’’ PDFr̃(xuj1 ,j2 , . . . ,jM) de-
scribed in terms ofM time-dependent parametersj i . These
parameters represent one or more behaviorally relev
quantities, e.g., eye position, properties of a visual scene
limb position. We can represent the target PDF in the m
mal space using the orthonormal basis$Fn(x);n
51,2, . . . ,D% in a straightforward fashion.

In the explicit space, we define a target set of neural fir
rate response profiles$ãi(j1 ,j2 , . . . ,jM): i 51,2, . . . ,N%.
For determination of the representation, neural noise
limited firing rate precision can be effectively treated by ad
ing a noise source« i to the target firing ratesãi .

The decoders are constructed such that the decoded
defined by Eq.~2! matches well with the target PDF. W
introduce a quadratic error measure

Edec5 K E Ddec
2 ~x,$jn%!r~$jn%!dxdj1dj2•••djM L

$« i %

~9!

FIG. 1. Formal transformations between the explicit, implic
and minimal spaces.
2-2
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FIG. 2. Gaussian structured representation.~a! Gaussian functions defining the firing rate responses of the neurons. Orthonormal ba
the minimal space are formed from these functions. The encoders are identical in shape to the firing rate profiles.~b! Typical decoder for the
Gaussian neural responses. This decoder corresponds to the neural response profile centered at 0.3~same as the decoder!. Other decoders are
of essentially the same shape, but centered at the corresponding firing rate profile.
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on the deviations

Ddec~x,$jn%!5 r̃~xu$jn%!2(
i 51

N

@ ãi~$jn%!1« i #f i~x!.

~10!

The PDFr($jn%) is a prior on the possible values of th
behavioral parameters; we take the prior to be unifo
throughout this work. The angle brackets indicate an
semble average over realizations of the neuronal noise.

We next substitute Eq.~5! into the deviations in Eq.~10!
and solve for the connection coefficientskn that minimize
the cost function in Eq.~9!. The coefficients can then be use
to directly calculate the decoding functions using Eq.~5!.

A similar procedure is employed to calculate the encod
functions. The target PDF is used to evaluate the firing ra
ai(t) by means of Eq.~4!, and the difference of these firin
rates from the assumed firing rate profilesãi($jn%) serves to
determine a quadratic error measureEenc. The coefficients
k̂ in that minimizeEenc are found and utilized to calculate th
encoding functions of Eq.~6!.

As a demonstration of how a representation can be
fined, consider a set of ten firing rate profiles that assu
Gaussian form in response to a specific stimulusj @Fig.
2~a!#. We take the target PDF to be a Diracd function d(x
2j) centered at the stimulus value. We define the minim
space to be the span of the neural activation functions,
generate the encoding functions, decoding functions, and
sociated transformation coefficients using the procedures
scribed above. The encoding functions have Gaussian fo
identical to the corresponding activation functions, while t
decoders have a typical structure as shown in Fig. 2~b!.

The explicit space representation is reasonably rob
against noise. Since the decoded PDF is insensitive to
presence of biologically plausible levels of noise, we will n
further consider neuronal noise in this work.

II. NEURAL BELIEF NETWORKS

A. Bayesian belief networks

In Sec. I B, we have summarized methods for encod
and decoding probability density functions into and from t
firing rates of populations of neurons. These methods
oriented towards encoding a single random variable~or vec-
tor!, but we do not wish to restrict ourselves to only t
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simplest implicit spaces. In this work, we will explore way
in which we can apply the methods so far developed@2# to
more complicated implicit spaces. In particular, we will u
Bayesian belief networks to efficiently organize the impli
random variables, and then use these Bayesian belief
works to generate neural networks.

Bayesian belief networks are directed acyclic graphs t
represent probabilistic models~Fig. 3!. Each node represent
a random variable, and the arcs~or directed line segments!
signify the presence of direct causal influences between
linked variables. The strengths of these influences are
fined using conditional probabilities. The directionality of
specified link indicates the direction of causality~or, more
simply, relevance!; an arc points from direct cause to effec

Bayesian belief networks have two properties that we w
find very useful, both of which stem from the independenc
shown by the graph structure. First, the value of a nodeX is
not dependent upon all of the other graph nodes. Rathe
depends only on a subset of the nodes, called a Mar
blanket of X, which separates nodeX from all the other
nodes in the graph. The Markov blanket of interest to us
be readily determined from the graph structure. It is co
prised of the union of the direct parents ofX, the direct
successors ofX, and all direct parents of the direct success
of X. Second, the joint probability over the random variab
is decomposable as

P~x1 ,x2 , . . . ,xn!5)
i 51

n

P@xi uNp~Xi !#, ~11!

where Np(Xi) refers to the~possibly empty! set of direct
parent nodes ofXi . This decomposition comes about fro
repeated application of Bayes’ rule and from the structure
the graph.

FIG. 3. A chain-structured Bayesian belief network. Eviden
e1 ande2 from the two ends of the chain influences the belief
the random variablesX andY. In a straightforward terminology,X is
referred to as the parent ofY and Y as the child ofX. From the
structure of the graph, we can see, for example, thatY is condition-
ally independent ofe1 givenX; this is true regardless of the value
of the linksP(e2uy), P(yux), andP(xue1).
2-3
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B. Probabilistic inference performed by neural networks

Before exploring arbitrary Bayesian belief networks, it
enlightening to consider a network with a simple graph c
sisting of two connected nodesX→Y. This graph represent
any probabilistic model where a single random variable
inferred from one source of evidence. For convenience,
will work in the minimal space.

Our objective is to find the most suitable marginal PD
r(y;t) and r(x;t) to describe the system. We represent
PDFs using Eq.~1! and

r~y;t !5(
n

Bn~ t !Cn~y!. ~12!

In this network, we find values of the output firing rat
$Bn(t)% only, with input firing rates$Am(t)% fully determined
by an encoding process.

We define a cost function by

Ey5
1

2E S r~y;t !2E r~yux!r~x;t !dxD 2

dy

5
1

2E S (
n

Bn~ t !Cn~y!

2(
m

Am~ t !E r~yux!Fm~x!dxD 2

dy. ~13!

The cost function has a minimum corresponding to takin
weighted average of the conditional probabilityr(yux),

r~y;t !5E r~yux!r~x;t !dx. ~14!

We assume in Eq.~14! that the relationship betweenx andy
is independent of the values of the underlying parame
Am(t) of the minimal space@2#.

The mean-square error is not the only possibility for t
cost functionEy ~or the generalized version introduced
Sec. II D!. Other appropriate choices may be, e.g., cross
tropy or mutual information. Changing the cost function m
produce improved results in some cases, and will alter
neural network dynamics we present here.

We minimizeEy using the gradient descent approach, o
taining the update rule

dBn~ t !

dt
52h

]Ey

]Bn

52hS Bn~ t !2(
m

VnmAm~ t ! D , ~15!

whereh is a rate constant and we identify the quantities

Vnm5E E Cn~y!r~yux!Fm~x!dxdy. ~16!

Equation~15! has a fixed point at
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Bn~ t !5(
m

Am~ t !E E Cn~y!r~yux!Fm~x!dxdy.

~17!

This is identical to the result obtained by encoding the inf
ence relation in Eq.~14! into the minimal space using Eq
~3!.

Equations~15! and ~16! define a network in the minima
space which can be converted to a neural network in
explicit space using transformations like those described
Sec. I B. In particular, we make use of Eqs.~7! and ~8! and
analogous expressions for the random variableY:

Bn~ t !5(
j

kn i
(y)bi~ t !, ~18!

bi~ t !5gS (
n

k̂ in
(y)Bn~ t ! D . ~19!

Using Eq. ~15!, the neural firing rates, for small timest,
become

bi~ t1t!5gS (
j

l i j bj~ t !1(
i

v i j ai~ t ! D , ~20!

where

l i j 5~12ht!(
n

k̂ in
(y)kn j

(y) , ~21!

v i j 5ht(
m,n

k̂ in
(y)Vnmkm j . ~22!

The neural network features lateral weightsl i j that act as a
form of associative memory, driving the preservation of
fixed neural state, and feedforward weightsv i j that imple-
ment probabilistic inference, driving the neural activati
state towards the fixed point given in Eq.~17!. The quantity
ht determines the relative importance of the two effec
allowing us to tune the network dynamics for different sy
tems.

The neural network in Eq.~20! is defined for discrete time
stepst. It is also possible to generate neural networks evo
ing in continuous time. The network dynamics can be de
mined by applying the chain rule to Eq.~19! to find dbi /dt
and eliminating all of the minimal space variables in favor
the explicit space neural firing rates. Alternatively, a use
approximation can be obtained by expandingbi(t1t) in Eq.
~20! to first order int, giving rise to

t
dbi~ t !

dt
52bi~ t !1gS (

j
l i j bj~ t !1(

i
v i j ai~ t ! D .

~23!

C. Predictive and retrospective support

Neural belief networks can feature two distinct types
information propagation that provide support for the PD
represented at each graph node. Predictive support,
called causal support, is probabilistic information that prop
2-4
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FIG. 4. Predictive and retrospective support of the absolute-value function. The results shown here utilize spaces of dimensionD56 to
represent bothx and y in the two networks. The structure of the spaces was determined from the singular-value decomposition@13# of a
discrete approximation ofr(yux)—the basis functionsFm(x) and Cn(y) are set to the singular vectors corresponding to theD largest
singular values.~a! The network with predictive support closely approximates the absolute-value function. Specifying a PDFr(x;t) centered
aboutx521/2 yields an inferred PDFr(y;t) of similar form centered aboutx511/2. ~b! The network with retrospective support allow
for both possible solutions. Specifying a unimodal PDFr(y;t) centered aboutx511/2 yields an inferred bimodal PDFr(x;t), with the
modes centered aboutx521/2 andx511/2.
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gates, along the directions of the graph links, from caus
effect @4#. The network considered in Sec. II B involves on
predictive support.

The second type of support is retrospective, or diagnos
support. In this case, information propagates against the
rections of the graph links, from effect to cause, or, equi
lently, from evidence to hypothesis@4#. By specifyingr(y;t)
instead ofr(x;t), theX→Y inference network features onl
retrospective support.

Using the same minimal-space representation@Eqs. ~1!
and ~12!# as we adopted for the predictive network, we d
termine the update rule for the retrospective network.
find

dAm~ t !

dt
5hS (

b
Bb~ t !Vbm2(

a
Aa~ t !YamD ~24!

with feedback weights

Vbm5E E Cb~y!r~yux!Fm~x!dxdy ~25!

and lateral weights

Yam5E S E r~yux!Fa~x!dxD S E r~yux!Fm~x!dxDdy.

~26!

While the feedback weightsVbm of the retrospective net
work are identical to the feedforward weights of the pred
tive network @Eq. ~15!# in the minimal space, note that th
resulting neural-network weights in the explicit space ne
not be identical. The lateral weightsYam provide a measure
of the correlation between what the different basis functio
in the parent nodeX predict about the child nodeY; these
lateral connections act to ensure consistency between
dence and hypothesis.

Although the networks driven by retrospective support
closely related to the networks driven by predictive supp
their function is quite different. For example, consider a n
work with r(yux)5d(y2uxu) as the underlying computa
tion. In a predictive network, wherein we specifyr(x;t) and
infer r(y;t), the absolute-value relationship is approximat
in a straightforward fashion@Fig. 4~a!#. Conversely, a retro-
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spective network based upon the same conditional PD
called upon to ‘‘invert’’ the absolute value, a noninvertib
function. The inferredr(x;t) decoded from the retrospectiv
network@Fig. 4~b!# captures both of the possible solutions
with positive and negative values—in response to a unim
dal PDFr(y;t).

D. Encoding Bayesian belief networks into neural networks

Following a strategy similar to that presented in Sec. II
we can develop neural-network update rules from arbitr
Bayesian belief networks . We assume that the Bayesian
lief network consists ofR nodes, symbolizing random vari
ablesX1 ,X2 ,X3 , . . . ,XR . We focus on the marginal distri
butions r(xi ;t) for the random variables as a function
time. The overall joint probability density is calculated as t
product of the marginal distributions, i.e., a so-called na
estimate.

Introducing representations

r~xi ;t !5(
m

Am
( i )~ t !Fm

( i )~xi ! ~27!

for the marginal distributions in the minimal space, we defi
auxiliary cost functions, analogous to that in Eq.~13!, with
the forms

Ei5
1

2E S r~xi ;t !2E r@xi uNp~Xi !#)
j

r~xj ;t !dxj D 2

dxi

5
1

2E F(
m

Am
( i )~ t !Fm

( i )~xi !

2E r@xi uNp~Xi !#)
j

(
n j

An j

( j )~ t !Fn j

( j )~xj !dxj G2

dxi .

~28!

In Eq. ~28!, the indexj for the product runs over the direc
parents ofXi .

We further define an aggregate cost function

E5(
i 51

R

KiEi . ~29!
2-5
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The parametersKi can be used to emphasize particular p
tions of the network; except where otherwise noted, we
sume thatKi51 for all i. Employing gradient descent t
minimize E, we find

dAs
(k)

dt
52h(

i 51

R

Ki

]Ei

]As
(k)

. ~30!

Since As
(k) does not appear in all of the cost function

]Ei /]As
(k) is nonzero only fori 5k and when the graph nod

for Xi is Nc(Xk), the set of children of the graph node fo
Xk . Thus,

1

h

dAs
(k)

dt
52Kk

]Ek

]As
(k)

2 (
i P$ i :XiPNc(Xk)%

Ki

]Ei

]As
(k)

. ~31!

As was the case for the two-node inference network,
input PDF or PDFs will be specified by an encoding proc
rather than an update rule of this sort.

The derivatives in Eq.~31! are straightforward bu
lengthy to evaluate. The resulting general equations~pre-
sented in the Appendix! are lengthy and can sometimes
awkward to use directly. For specific probabilistic models
may be more convenient to write out the cost functions us
Eq. ~28! and directly evaluate the necessary derivativ
@specified by Eq.~31!#.

III. APPLICATIONS OF NEURAL BELIEF NETWORKS

A. Bidirectional propagation

So far, we have restricted our attention to developing n
ral networks that encode simple probabilistic models invo
ing only a single source of evidence. Given suitable rep
sentations, we can design neural networks that captu
wide variety of probabilistic relations@2#. Further, by regard-
ing representations of probabilistic dependence models
Bayesian belief networks, we have seen that two types
information propagation come into play: predictive and r
rospective.

In this section, we will examine several applications
neural belief networks. Unlike those considered before,
probabilistic models will now feature multiple sources
evidence, with bidirectional propagation of both predicti
and retrospective support. The corresponding neural
works thus have neurons with both feedforward and fe
back connections, as well as lateral connections.

B. Neural propagation of evidence in trees

To facilitate investigation of information propagation
neural belief networks, we first focus on networks who
implicit spaces are specified by tree-structured Bayesian
lief networks@Fig. 5~a!#. These implicit networks are gener
enough to illustrate the concepts, while yielding neural n
works that are readily understood. We will examine bina
trees, where each node has at most two children, but
results extend simply to more general tree structures.

We may assume that evidence is only available in the r
node and the leaf nodes~although all such nodes need n
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provide evidence!. The root node is the single node whic
has no father and is located at the top of the tree, while
leaf nodes are all the nodes which have no children. If
other nodeX were externally specified, the subtree rooted
X could be broken off and treated separately. Conversely,
father node ofX is unaffected by the descendants ofX, so
they could be deleted from the original tree, leavingX as a
leaf node.

Clearly, an unspecified root node can only receive ret
spective support, while an unspecified leaf node can o
receive predictive support. All other unspecified nodes in
tree will receive both retrospective and predictive suppo
We will thus need to consider separately these three type
nodes when determining the update rules for the neural
work.

An unspecified root nodeX with childrenY andZ receives
feedback inputs~retrospective support! from both of them
~Fig. 5!. We introduce the representations

r~x;t !5(
a

Aa~ t !Fa~x!, ~32!

r~y;t !5(
b

Bb~ t !Cb~y!, ~33!

r~z;t !5(
g

Cg~ t !Qg~z!. ~34!

FIG. 5. Tree-structured Bayesian belief networks.~a! In this
tree, nodeA is called the root, while nodesD, F, G, andH are called
the leaves. For trees, the direct parent of a node is called its fa
and its direct children are called its sons. Since each father ha
most two sons, the tree shown here is a binary tree.~b! A small tree.
Any of the nodes in this tree can be specified as evidence. The
leaf nodes could also provide evidence: both leaves can pro
information to the root, but if the root and one of the leaves
specified, the other leaf will only be driven by the root~its Markov
blanket!. ~c! A treelike graph with the arrows reversed. Any two
the nodes can be specified and its information will propag
throughout the network. Unlike the case of the tree, the Mark
blanket of any node is both of the other nodes.~d! Chains are
special cases of trees. This three-node chain can feature both
dictive and retrospective support.
2-6
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Following the procedures described in Sec. II D, the upd
rule for the root is

1

h

dAm

dt
52Ky

]Ey

]Am
2Kz

]Ez

]Am
, ~35!

with

]Ey

]Am
5(

a
Aa~ t !E S E r~yux!Fa~x!dxD

3S E r~yux!Fm~x!dxDdy

2(
b

Bb~ t !E E Cb~y!r~yux!Fm~x!dxdy

~36!

and

]Ez

]Am
5(

a
Aa~ t !E S E r~zux!Fa~x!dxD

3S E r~zux!Fm~x!dxDdz

2(
g

Cg~ t !E E Qg~z!r~zux!Fm~x!dxdz.

~37!

Thus, the firing rates for the root node are driven by a sum
feedback inputs that individually are identical to the inp
produced by a single source of retrospective support~Sec.
II C!. The parametersKy andKz need not be the same; di
ferent values may be used to give greater significance to
of the inputs.

The firing rates for an unspecified leaf node are also
dated by a familiar rule. Consider a leaf nodeX with father
U. Using Eq.~32! and

r~u;t !5(
d

Dd~ t !Ld~u!, ~38!

we obtain the update rule

1

h

dAm

dt
52Kx

]Ex

]Am
, ~39!

where

]Ex

]Am
5Am~ t !2(

d
Dd~ t !E E Ld~u!r~xuu!Fm~x!dudx.

~40!

This update rule is of course identical to the update rule
the X→Y network with predictive support~Sec. II B!.

All nonroot, nonleaf nodes have similar update rules. F
a nodeX with father U and sonsY and Z, we impose the
representations given above in Eqs.~32!–~34! and~38!. Ap-
plying the procedure of Sec. II D yields an update rule w
form
04191
te
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1

h

dAm

dt
52Ky

]Ey

]Am
2Kz

]Ez

]Am
2Kx

]Ex

]Am
. ~41!

The partial derivatives of the cost functions are identical
those evaluated for the root and leaf nodes. The descend
and ancestors ofX thus communicate, in the neural networ
only through the intermediary ofX itself. This is consistent
with the tree structure of the underlying Bayesian belief n
work; givenX, the descendants ofX are conditionally inde-
pendent of the ancestors ofX @4#.

With these update rules, evidence provided at the r
node or at leaf nodes will propagate throughout the netwo
The manner in which evidence is specified will depend
how the probabilistic model is posed. Therefore, the sa
graph could have different nodes specified for different p
poses. For instance, the small tree in Fig. 5~b! could have
any of its nodes represent sensory inputs.

If we specify the PDF for the root node, the leaf nodesY
and Z will receive predictive support fromX. By selecting
appropriate representations for the PDFs and for the co
tional probabilities associated with the links, the resulti
neural network could subdivide a complex, highly gene
sensory input into simpler, more specialized components.
example, a visual input at a particular retinal location mig
be separated into contrast and color.

Conversely, if we specify PDFs for the leaf nodes, t
root nodeX will receive retrospective support fromY andZ.
Amongst other possibilities, this provides a simple way
model redundant sensory inputs. If we take the conditio
probabilities to be of narrow Gaussian form,r(yux)
5N(y;x,sy

2) and r(zux)5N(z;x,sz
2), then the firing rates

representingr(x;t) will be updated so as to pool the diag
nostic information from both the sensory inputs,Y andZ.

Similar arguments apply to larger trees. Additional
larger trees may well have the root node and leaf no
specified simultaneously~which is not of interest for the
small tree discussed above!. These nodes may correspond
sensory inputs, or can represent priors that are built into
neural network.

It is important to recognize that the neural update ru
developed above apply only to the binary trees. If the arro
in the binary tree graphs are reversed, rather different up
rules are produced. For example, the directions of the sm
tree shown in Fig. 5~b! can be reversed, as shown in Fi
5~c!. SpecifyingY andZ yields the multiplicative update rule

1

hKx

dAa~ t !

dt

52Aa~ t !1(
b,g

Bb~ t !Cg~ t !

3E E E Fa~x!r~xuy,z!Cb~y!Qg~z!dxdydz, ~42!

while specifyingX andZ yields
2-7
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FIG. 6. A neural belief network can estimate the velocity of a moving target.~a! The position of the target is copied into two differe
populations of neurons, with different time delays.~b! The time delay and the difference of the two copies of position are used to est
the velocity. The results shown here were obtained with the PDFs for each of the random variables represented using minimal spac
by two straight-line basis functions.
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1

hKx

dBn~ t !

dt

5(
a,g

Aa~ t !Cg~ t !E E E Fa~x!r~xuy,z!Cn~y!

3Qg~z!dxdydz2 (
b,g1 ,g2

Bb~ t !Cg1
~ t !Cg2

~ t !

3E H S E E r~xuy,z!Cb~y!Qg1
~z!dydzD

3S E E r~xuy,z!Cn~y!Qg2
~z!dydzD J dx. ~43!

This latter update rule features a feedforward term tha
multilinear in the parameters$Aa(t)% and $Cg(t)%. It also
features a nonlinear lateral combination of the parame
$Bb(t)%, and $Cg(t)% which serves to ensure that the tw
parent nodesY andZ are mutually consistent with the PDF o
the child nodeX. If only X is specified, there will be an
additional update rule for the parameters$Cg(t)%, which is
similar in form to Eq.~43!.

Although the update rules are more complicated with
directions reversed in this manner, the probabilistic mo
may demand it. For instance, the Bayesian belief networ
Fig. 5~c! is appropriate for implementing the arithmetic o
erations~add, subtract, multiply, and divide!.

An interesting application of these two types of neu
belief networks~tree and reversed tree! is the estimation of
the velocity of a moving object. A small tree@Fig. 5~b!# can
generate two copiesY andZ of the input positionX by taking
the conditional probabilities to be Diracd functions d(y
2x) andd(z2x). We can set the parametersKi so that the
values of the copies will be held for different lengths of tim
In particular, we can establish the relationsr(y;t)5r(x;t
2t) and r(z;t)5r(x;t22t). These copies of the positio
can then be used as the inputs to a second Bayesian b
network , of the type shown in Fig. 5~c!. By setting
r(vuy,z)5d@v2(y2z)/t# in this second network, the ran
dom variableV becomes an estimate of the velocity at tim
t2t.

However, there is not a unique way to extract the veloc
from the network. We have chosen to obtain the velocity
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the mean value of the random variableV ~Fig. 6!. This
choice presents a difficulty for ambiguous cases, e.g., a m
timodal PDFr(x;t), where the mean can be a poor match
any of the possible velocities. One approach to eliminat
problems caused by ambiguous inputs is to utilize a lo
dimensional representation where the mean is well rep
sented but multimodal distributions are excluded; the vel
ity estimates in Fig. 6 were produced using such
representation~discussed at length in Ref.@2#!. Alternatively,
the velocity could be determined in a different fashion@e.g.,
taking the maximum value ofr(v;t)], or the network could
be implemented to directly handle ambiguous cases~see the
following section!.

C. Top-down feedback from a high-level model

In Sec. III B, we examined the neural update rules
Bayesian belief networks having binary-tree structure.
doing so, we examined the means by which informat
propagates throughout the network from one or m
sources. In particular, we saw that conditional independe
in the Bayesian belief network was preserved in the neu
network connectivity.

We now turn from the general rules by which probabilis
information propagates in the neural network and investig
in more detail the effects that multiple sources of eviden
have on the encoded PDFs. We consider PDFs encode
chains of nodes with evidence provided at one or both en
~Specifying the PDF for any other node breaks the chain i
two chains that can be treated independently.! A chain is a
special case of a tree, so the neural update rules can be
tained as in Sec. III B.

We have already studied at some depth the behavio
chains consisting of two nodes~Secs. II B and II C!. These
chains are able to transmit probabilistic information fro
one node of the graph to another, with the accuracy limi
by the representations adopted. Even a relatively small n
ber of neurons can produce networks of suitable quality~e.g.,
the networks implementing the absolute value function
Fig. 4!.

Every chain with three or more nodes will admit bo
predictive and retrospective support. The behavior of all s
chains is well characterized by a chain with three nodes:
update rule for any node depends only on the neighbo
nodes, so a chain with three nodes@Fig. 5~d!# covers all
2-8
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FIG. 7. Propagation of evidence in chain-structured neural belief networks.~a! Multiple sources of evidence can help to resol
ambiguous information. Here, the inferior mode of a bimodal, bottom-up inputr(x;t) is damped by a more specific top-down signalr(z;t).
~b! A high-level model can be dynamically generated in a neural belief network with a populationZ of winner-take-all neurons. An
ambiguous input signal atX is propagated to the winner-take-all neurons throughY. The winner-take-all neurons only respond to the stron
mode of the bimodal input, which damps the inferior mode inr(y;t).
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possibilities~only predictive support, only retrospective su
port, and both predictive and retrospective support!. To keep
the focus on the interaction of multiple sources of eviden
we take the conditional probabilities to be the Diracd func-
tionsr(yux)5d(y2x) andr(zuy)5d(z2y) and use identi-
cal parametersKy andKz . We utilize the Gaussian represe
tation introduced in Sec. I C

The first possibility is just to add the third node witho
adding any additional evidence to the network. We dec
r(y;t) andr(z;t) from neural firing rates determined usin
update rules derived previously for more general trees.
identical inputs in the two-node and three-node networks,
steady state behavior ofr(y;t) is unchanged by the additio
of the retrospective support from the third node, and
structure ofr(z;t) is identical to that ofr(y;t).

Since the same evidence is presented to the network
introduction of a third node does not change the behavio
the original nodes. This is entirely appropriate, given
probabilistic foundations of the neural belief networks. Ho
ever, it is feasible that, by adjusting theKi parameters or the
PDFs representable by the minimal spaces, there can
change in the dynamics of neural networks extended in
fashion. For example, appropriate parameter choice co
produce a slowly varying PDF inZ, which is relatively stable
against noise, thus stabilizing a more rapidly varying P
in Y.

A more proactive role that the third nodeZ can play is as
an additional source of evidence. We directly specifyr(z;t)
and encode it into the neural network. The neural firing ra
for Y are driven by predictive support fromX and retrospec-
tive support fromZ, and then decoded to findr(y;t). One
possible use of this second source of evidence is to res
an ambiguous input: the inferior mode of a bimodal pred
tive input can be deemphasized using more specific re
spective evidence@Fig. 7~a!#.

Although this use of the retrospective evidence resol
the ambiguous predictive input, it does not explain how
retrospective evidence comes about. Ideally, we would
to build up a high-level model of the predictive input, an
use the model to generate a top-down signal that impo
global regularity on the bottom-up predictive input. This r
quires an extension of the probabilistic framework to allo
one to assess the quality of a PDF as a model, rather
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simply to employ PDFs as descriptions of analog variabl
To do this, we adopt an approach that illustrates the fi

steps towards implementing decision theory@14# in neural
networks. Conceptually, we introduce a set of model PD
and requirer(z;t) to be the PDF from this set that is th
closest match tor(y;t). For the present example, we tak
the model PDFs to have Gaussian forms, similar to thos
Fig. 2~a!, but suitably normalized.

The model PDFs are translated into the explicit-spa
neural network by taking the neurons representingr(z;t) to
be winner-take-all units. Only one of these neurons will
active at a time, based on a simple utility function: the ne
rons compete to be active, and the single neuron that is m
strongly driven will be the one that is activated. The mann
of implementation of the winner-take-all units is immateria
so we directly choose the most strongly driven neuron in
computer simulations.~It is possible to implement a set o
winner-take-all units in a real network through a suitab
choice of nonlinear activation function and lateral weigh
One may, e.g., let each neuron inhibit the others and ha
self-excitatory connection@15#.!

The decoding functions used earlier are no longer w
suited forZ. They were optimized to collectively represe
general PDFs, but individually they work poorly to represe
the model PDFs. However, it is clear that, for the winn
take-all neurons we have introduced, the appropriate dec
ers are directly proportional to the model PDFs themselv
This leads to minor alterations in the weights of the neu
network in the explicit space.

Since only the most strongly driven winner-take-all ne
ron is activated, this strategy provides us with a way to g
erate a high-level model that selects the dominant mode
multimodal input distribution. We allowZ to be driven by the
predictive support fromY, and the winner-take-all nature o
the Z neurons permits only narrow Gaussian PDFs to
represented. Thus,r(z;t) serves as our high-level model, an
can resolve ambiguous inputs, as demonstrated in Fig. 7~b!.
This type of neural network could be used as the start
point for coherent theoretical accounts of attentive effects
the primate visual system, of the electrosensory system
weakly electric fish, and of other neural systems where
internal model is built up to impose global constraints
neural representations of information.
2-9
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IV. CONCLUSIONS

We have extended the hypothesis that neural netwo
represent information as probability density functions. Th
PDFs are assumed to be obtainable by a linear combina
of some implicit decoding functions, with the decoder f
each neuron being weighted by its firing rate. The firing ra
in turn are obtainable from the PDF using a complement
set of encoding functions.

Success in representing an individual PDF with a popu
tion of neurons@2# has led us to inquire whether more com
plex probabilistic models can be represented and im
mented in neural terms. To this end, we have adop
graphical representations of probabilistic dependence m
els, in the form of Pearl’s Bayesian belief networks, to org
nize and simplify the relations between the random variab
in such a model.

The resulting neural belief networks share properties w
both neural-network models and Bayesian belief netwo
In particular, multiple sources of evidence are consisten
pooled based on local update rules, providing a distribu
version of a probabilistic model. A number of interestin
applications of neural belief networks are possible, includ
velocity estimation and the disambiguation of low-level i
puts using feedback from a high-level model.

A possible shortcoming of the class of networks explo
here is that the dynamics depend upon multiplicative
sponses@Eqs. ~42!, ~43! and ~A1!#. Multiplication of the
minimal-space coefficients becomes multiplication of neu
firing rates in the explicit space. Neurons with multiplicati
responses are computationally powerful, but single-neu
mechanisms for neuronal multiplication have proven elus
Salinas and Abbott have shown that populations of neur
can collectively produce multiplicative effects@16#, but it is
not clear that the precise and complex multiplication nee
can be implemented in this way. It may be necessary to g
eralize the simple encoding rule@Eq. ~4!# to a more sophis-
ticated form that produces neural networks with less dep
dence on multiplicative interactions.

In summary, we have introduced, analyzed, and app
three ways to represent probabilistic information. These
the implicit model, depicted as a Bayesian belief netwo
the representation of the probabilistic model in the minim
space; and the representation of the probabilistic model
neural network in the explicit space. Further, we have
vised rules that permit us to convert one type of represe
tion into another type. This formalization of the represen
tion and processing of information in neurobiologic
computation therefore suggests a general protocol by w
probabilistic models can be embedded in neural netwo
First, we specify the probabilistic model, using a Bayes
belief network to organize the random variables. We th
consider what types of functions are exemplars of the PD
describing the random variables and use these exempla
define the minimal space. Finally, we utilize the relatio
between the minimal space and the explicit space to gene
the neural network itself.
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ziplinäre Forschung, University of Bielefeld. J.W.C. also a
knowledges support received from the Fundac¸ão Luso-
Americana para o Desenvolvimento~FLAD! and from the
Fundac¸ão para a Cieˆncia e a Technologia~FCT! for his par-
ticipation in Madeira Math Encounters XXIII at the Unive
sity of Madeira, where the work was concluded.

APPENDIX: GENERAL EQUATIONS FOR NEURAL
BELIEF NETWORKS

1

h

dAs
(k)

dt
52KkS As

(k)2)
j

(
n j

An j

( j )Vsn1n2•••n j max

(k) D
1(

i
Ki(

m
Am

( i ))
j Þk

(
n j

An j

( j )Vmn1n2•••n j max
s

( ik)

2(
i

Ki)
j

)
j 8Þk

(
n j

An j

( j )(
m j 8

Am j 8

( j 8)

3Yn1n2•••n j max
m1m2•••m j max8 s

( j j 8k) , ~A1!

where we have defined

Vsn1n2•••n j max

(k) 5E Fs
(k)~xk!r@xkuNp~xk!#)

j
Fn j

( j )~xj !dxjdxk

~A2!

Vmn1n2•••n j max
s

( ik) 5E Fm
( i )~xi !r@xi uNp~xi !#Fs

(k)~xk!

3)
j Þk

Fn j

( j )~xj !dxjdxidxk , ~A3!

and

Yn1n2•••n j max
m1m2•••m j max8 s

( j j 8k)

5E S E Fs
(k)~xk!r@xi uN2p~xi !#

3 )
j 8Þk

Fm j 8

( j 8)~xj 8!dxj 8dxkE r@xi uNp~xi !#

3)
j

Fn j

( j )~xj !dxj D dxi . ~A4!

The sums over the indexi in Eq. ~A1! run over the children
of Xk . The products are over the parents of either nodeXk
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@Eq. ~A2!, first term in Eq.~A1!# or nodeXi @Eqs.~A3! and
~A4!, second and third terms in Eq.~A1!#, possibly exclud-
ing nodeXk itself. From these equations, it can be seen t
the PDF represented at a nodeXi is updated based only on it
u

t-
,

.

nc

04191
t

direct parents, its direct descendents, and the direct par
of its direct descendents, so thatXi is separated from al
other nodes in the neural belief networks by an appropr
Markov blanket.
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