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Generating neural circuits that implement probabilistic reasoning
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We extend the hypothesis that neuronal populations represent and process analog variables in terms of
probability density functionéPDF9. Aided by an intermediate representation of the probability density based
on orthogonal functions spanning an underlying low-dimensional function space, it is shown how neural
circuits may be generated from Bayesian belief networks. The ideas and the formalism of this PDF approach
are illustrated and tested with several elementary examples, and in particular through a problem in which
model-driven top-down information flow influences the processing of bottom-up sensory input.
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[. INTRODUCTION an efficient means for organizing the relations between the
random variables of a given model. The resulting neural net-
works will have several properties of Bayesian belief net-
In this work we elaborate upon the propositifij that  works, as well as more typical neural-network properties, so
neural populations encode and process information abou}e will call them neural belief networksBayesian belief
analog variables in the form of probability density functions network have been previously utilized in the genesis of cer-
(PDFS. As demonstrated elsewhefi2], explicit representa-  (4in neural network$6,7], although with different methods

tion of probabilistic descriptors of the state of knowledge oftq ganerating the neural-network architecture and dynamics.
physically relevant variables subserves a powerful strategy

for modeling neural circuits. By exploiting mathematical
tools developed within the theory of Bayesian inference, we
can establish general procedures for building and under- In the context of the PDF hypothegi8], we assert that a
standing models of cortical circuits that carry out well-posedphysical variablex is described by a neural population at
information-processing tasks. time t in terms of a PDFp(x;t), rather than as a single-
Systems based on probabilistic frameworks provide ggajued estimatex(t). In general, we consider a PDF de-
number of strong conceptual advantages. Importantly, a NneWscriped at time in terms of a set oD time-dependent pa-
ral assembly encoding the joint probability density over re"rameters{A 1. One possible description is suggested by
evant analog variables can in principle answer any probabiineay decooTing rules, which have been shown to be adequate

listic question about these variables. Further, by, some situation§9,10], leading to PDFs represented as
implementing the Bayesian rules of inference, a probabilistic

formulation provides a direct and consistent means to deal _
with changing sources of evidence in the system. P(X't):zl AP (X). @
Motivated by these facts, we shall now extend the PDF

hyp_o_thes_,ls by devising methods _for gmbeddmg joint prOb'The basis function® ,(x) are orthonormal functions which
abilities into neural networks. This will enable us to con- =

serve to define the PDFs that the neural circuit can represent,

struct neural circuit models_ that pool multiple sources Ofbut the amplitudes\ ,(t) cannot be interpreted as neuronal
evidence, such as sensory inputs and any evolutionarily d(?i' £

termined priors on the joint distribution. More specificall fing rates due to their arbitrarily high precision and their
ed p joint ' P Y ability to take on negative values. Therefore, we introduce an
we will focus on developing neural networks that use

. . . . ) additional representation of the PDF in terms of firing rates
bottom-up” sensory inputs to build an internal model of the . . .

N “ . . a;(t) and decoding functiong;(x) assigned td\ neurons,
data, which in turn uses “top-down” signals to impose glo-

bal regularities on the sensory data. In the resulting neural® that

networks, there will naturally arise distinct feedforward, N

feedback, and Iatergl connections, analogous to the neural p(x;t)zz ai(t) di(x). 2

pathways observed in the anatomy of the cerebral c¢&Ex i=1

Our treatment is based on Bayesian belief netw4ks],

graphical representations of probabilistic models that providéJnlike the basis functions ,(x), the decoding functions
¢i(x) form a highly redundant, overcomplete representation
(N>D) suitable for use with neuronal units having biologi-

*Electronic address: mjb@uma.pt cally realistic precisioritypically some 2—3 bit$11]).

A. Fundamental hypothesis

B. Three levels of representation

D
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The abstract representation defined by @g.will under- explicit
lie the representation in the neuron space defined by(Zg. space
This allows us to deal with the issue of how PDFs can be
precisely implemented in populations of neurons by focusing
on the mapping between the minimal space and the space of
neurong 2]. Thus, neural belief networks can be developed
in the theoretically convenient abstract representation, and
then be implemented in more realistic networks of low-
precision model neurons. Adopting the terminology of Zemel
et al. [12], we denote the set of physical variables as the
implicit spaceand the measurable quantities as &xplicit
space Extending their nomenclature, we denote the abstract
space of Eq(1) as theminimal spaceThe explicit space of

plz;t) = E” Au (t)tl># ()

neurons constitutes a biological implementation of the de-  jpplicit minimal
sired computations in the implicit space, while the minimal space space
space, whose properties are more conducive to formal analy- Au(t) = [ ule)p(z;t) do

sis, provides a valuable bridge between the two other spaces. ] S

We have developed rules to transform between represen- FIQ. _1. Formal transformations between the explicit, implicit,
tations in the three spacf®]. Equations(1) and (2) respec- and minimal spaces.
tively define how to transform representations in the minimal D
and explicit spaces into a representatiBDF) in the implicit _ -

; e . a(t)=f DALY ] 8
space. With the remaining rulésummarized beloyy we can (® z KinAu(t) ®
readily switch between the three representations and ap- _ _
proach any task in the most appropriate space. The formal relations between the three spaces are illus-

For the orthonormal basig® ,(x)}, the minimal space trated in Fig. 1.
coefficientsA ,(t) are found using the encoding rule

v=

C. Obtaining the representation

Aﬂ(t)ZJ ®,(x)p(X;t)dx. ©) Using Egs.(2)—(8), we can transform between represen-
tations in the explicit, implicit, and minimal spaces using the
The coefficients in the explicit space, i.e., the neural firingencoding functions}bi(x), the decoding functiong;(x), and
ratesa;(t), cannot be found in this direct fashion. We utilize {he associated transformation coefficierts and x;,. We
a set of encoding functions;(x) and an encoding rule of the present here a brief discussion of how to determine these
form functions and coefficients. Methods for their explication
have been developed and presented in greater detail in a
ai(t):f(f ff)i(x)p(x;t)dx). (4) previous papef2], which includes a discussion of the effect
of the dimensionalityD of the minimal space. The method

This explicit-space encoding rule is patterned after the neurd!® Present here is not unique, and could be modified, e.g., by
responses associated with the population vector of GeotSing @ different error measure than that in £9).to derive
gopouloset al. [9]. The activation functiorf in general is e decoders. B

nonlinear, and serves to prevent negative firing rates. One Consider a known “target” PDip(x|&1,&;, . . . ,éy) de-
possible choice fof is rectification, i.e.,f(x)=x for x>0  scribed in terms oM time-dependent parametefs. These
andf(x) =0 otherwise; we make use of rectifying activation parameters represent one or more behaviorally relevant
functions throughout this work. quantities, e.g., eye position, properties of a visual scene, or

To relate the explicit and minimal spaces, we express thémb position. We can represent the target PDF in the mini-

encoding and decoding functions in terms of the orthonormamal space using the orthonormal basigb,(x);»v

basis, so that =1,2,...D} in a straightforward fashion.
b In the explicit space, we define a target set of neural firing
bi(X)=> K, D, (x), (5) rate response profile$a;(£1,&5, ... ,&m):i=1,2, ... N}
v=1 For determination of the representation, neural noise and

b limited firing rate precision can be effectively treated by add-
;bi(x): E ,}i D (). (6) ing a noise source; to the target firing rates; .
= The decoders are constructed such that the decoded PDF
) o defined by Eq.(2) matches well with the target PDF. We
It can be shown that the transformation coefficierfsand  introduce a quadratic error measure

ki, also relate theA ,(t) anda;(t), such that
N Edec:< f Dgec(xv{gv})P({gv})ddeldgz' : 'd§M>
AD=2, wyidi(D), (7) “
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FIG. 2. Gaussian structured representatighGaussian functions defining the firing rate responses of the neurons. Orthonormal bases for
the minimal space are formed from these functions. The encoders are identical in shape to the firing rate(lprdfilg@sal decoder for the
Gaussian neural responses. This decoder corresponds to the neural response profile centdsednat 8s3he decodeOther decoders are
of essentially the same shape, but centered at the corresponding firing rate profile.

on the deviations simplest implicit spaces. In this work, we will explore ways
N in which we can apply the methods so far develoffdto

Dy X, =7(x _ e +e1di(x). more complicated implicit spaces. In particular, we will use

aedX {6 =pONED ;1 (&) +2ildi(x) Bayesian belief networks to efficiently organize the implicit

(10 random variables, and then use these Bayesian belief net-
] ] ) works to generate neural networks.
The PDFp({¢,}) is a prior on the possible values of the  ayesian belief networks are directed acyclic graphs that
behavioral parameters; we take the prior to be uniformyepresent probabilistic modelBig. 3). Each node represents
throughout this work. Thg a_ngle brackets indicate an eny random variable, and the ares directed line segments
semble average over realizations of the neuronal noise.  gjgnify the presence of direct causal influences between the
We next substitute Eq(5) into the deviations in EQ10)  |inked variables. The strengths of these influences are de-
and solve for the connection coefficients that minimize  fined using conditional probabilities. The directionality of a
the cost function in Eq(9). The coefficients can then be used gpecified link indicates the direction of causalityr, more
to directly calculate the decoding functions using E&). simply, relevance an arc points from direct cause to effect.
A similar procedure is employed to calculate the encoding  Bayesian belief networks have two properties that we will
functions. The target PDF is used to evaluate the firing rategng very useful, both of which stem from the independencies
a;(t) by means of Eq(4), and the difference of these firing shown by the graph structure. First, the value of a éde
rates from the assumed firing rate profilgé{¢,}) serves to  not dependent upon all of the other graph nodes. Rather, it
determine a quadratic error measitg,.. The coefficients depends only on a subset of the nodes, called a Markov
ki, that minimizeE,,.are found and utilized to calculate the blanket of X, which separates nod¥ from all the other
encoding functions of Eq6). nodes in the graph. The Markov blanket of interest to us can
As a demonstration of how a representation can be debe readily determined from the graph structure. It is com-
fined, consider a set of ten firing rate profiles that assumé&rised of the union of the direct parents X¥f the direct
Gaussian form in response to a specific stimufufFig.  successors o, and all direct parents of the direct successors
2(a)]. We take the target PDF to be a Diradfunction 8(x of X. Second, the joint probability over the random variables
—§ centered at the stimulus value. We define the minimalS decomposable as
space to be the span of the neural activation functions, and n
generate the encoding functions, decoding functions, and as- P(Xq, X5, . . . ,Xn):H P[Xi|Np(xi)]: (11
sociated transformation coefficients using the procedures de- =1

scribed above. The encoding functions have Gaussian form\ﬁhere N (X;) refers to the(possibly empty set of direct
identical to the corresponding activation functions, while the pL : P y emp
parent nodes oK;. This decomposition comes about from

decoders have a typical structure as shown in Fig).2 Sl :
The explicit space representation is reasonably robus[ggegar';eshappllcatlon of Bayes' rule and from the structure of

against noise. Since the decoded PDF is insensitive to th
P(x|e") ° Ply|x) p(e-|y)
Il. NEURAL BELIEF NETWORKS

presence of biologically plausible levels of noise, we will not
further consider neuronal noise in this work.
A. Bayesian belief networks FIG. 3. A chain-structured Bayesian belief network. Evidence
) ~e* ande” from the two ends of the chain influences the belief in
In Sec. I B, we have summarized methods for encodinghe random variableX andY. In a straightforward terminologs is
and decoding probability density functions into and from thereferred to as the parent of and Y as the child ofX. From the
firing rates of populations of neurons. These methods aretructure of the graph, we can see, for example, Ytiatcondition-
oriented towards encoding a single random varidbtevec-  ally independent oé™ givenX; this is true regardless of the values
tor), but we do not wish to restrict ourselves to only theof the linksP(e|y), P(y|x), andP(x|e").
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B. Probabilistic inference performed by neural networks

Before exploring arbitrary Bayesian belief networks, it is BV(t)_% A“(t)f J VL (y)p(YX) P, (x)dxdy.
enlightening to consider a network with a simple graph con- a7
sisting of two connected nodes— Y. This graph represents
any probabi“stic model where a sing|e random variable |STh|S is identical to the result obtained by enCOding the infer-
inferred from one source of evidence. For convenience, w€nce relation in Eq(14) into the minimal space using Eq.
will work in the minimal space. Q).

Our objective is to find the most suitable marginal PDFs Equations(15) and (16) define a network in the minimal
p(y:t) and p(x;t) to describe the system. We represent theSpace which can be converted to a neural network in the

PDFs using Eq(1) and explicit space using transformations like those described in
Sec. | B. In particular, we make use of E¢%) and(8) and
p(y't)=2 B()W,(y). (12) analogous expressions for the random variable
B,()=2 «Yby(t), (18
J

In this network, we find values of the output firing rates

{B,(t)} only, with input firing rateg A ,(t)} fully determined

by an encoding process. bi(t):g< > ;}i(‘V’)BV(t)). (19
We define a cost function by v

1 2 Using Eq.(15), the neural firing rates, for small times
Ey=§J p(y;t)—Jp(yIX)p(x;t)dx dy become
1 (t+7)= bi(t)+ Las 2
:EJ(E B (y) bi(t-+7) g(? Niby(D+ 2 wjait) |, (20)
2 where
-2 Al f p(ylx)%(x)dx) dy. (13 )
a Nij=(1— 7]7’)2 Ki(Z)KS}j/) , (22)
The cost function has a minimum corresponding to taking a
weighted average of the conditional probabilitgy|x), wij= ”TMEV Rgl)ﬂmmj . 22)
P(y;t)ZJ p(y[X)p(x;)dx. 149 The neural network features lateral weights that act as a

form of associative memory, driving the preservation of a

We assume in Eq14) that the relationship betweenandy  fixed neural state, and feedforward weightg that imple-

is independent of the values of the under|ying parameterment probabilistic inference, driving the neural activation

A,,(t) of the minimal spac¢2)]. state towards the fixed point given in E4.7). The quantity
The mean-square error is not the only possibility for the77 determines the relative importance of the two effects,

cost functionE, (or the generalized version introduced in allowing us to tune the network dynamics for different sys-

Sec. Il D. Other appropriate choices may be, e.g., cross enems.

tropy or mutual information. Changing the cost function may  The neural network in Eq20) is defined for discrete time

produce improved results in some cases, and will alter th&tepsr. Itis also possible to generate neural networks evolv-

neural network dynamics we present here. Ing in continuous time. The network dynamiCS can be deter-

We minimizeE, using the gradient descent approach, ob-mined by applying the chain rule to EFL9) to find db; /dt
taining the update rule and eliminating all of the minimal space variables in favor of
the explicit space neural firing rates. Alternatively, a useful

dB,(t) JEy approximation can be obtained by expandmng + 7) in Eq.

dat UaBV (20) to first order inr, giving rise to
db;(t)
=—7}(By(t)—% QA1 ], (15) Tt =—bi(t)+g EJ: )\ijbj(t)+§i: w;;ai(t) |.
(23)

where 7 is a rate constant and we identify the quantities o _
C. Predictive and retrospective support

_ Neural belief networks can feature two distinct types of
Q,,= v D dxdy. 16
" J f VPV, (x)dxdy, (16 information propagation that provide support for the PDFs

represented at each graph node. Predictive support, also
Equation(15) has a fixed point at called causal support, is probabilistic information that propa-
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FIG. 4. Predictive and retrospective support of the absolute-value function. The results shown here utilize spaces of dméhsion
represent botkx andy in the two networks. The structure of the spaces was determined from the singular-value decompi&itodra
discrete approximation gb(y|x)—the basis functionsb ,(x) and ¥,(y) are set to the singular vectors corresponding toDhkargest
singular values(a) The network with predictive support closely approximates the absolute-value function. Specifyinge>@DFentered
aboutx= —1/2 yields an inferred PDJp(y;t) of similar form centered about= + 1/2. (b) The network with retrospective support allows
for both possible solutions. Specifying a unimodal Ppy;t) centered about= +1/2 yields an inferred bimodal PDp(x;t), with the
modes centered aboxt — 1/2 andx= + 1/2.

gates, along the directions of the graph links, from cause tgpective network based upon the same conditional PDF is

effect[4]. The network considered in Sec. Il B involves only called upon to “invert” the absolute value, a noninvertible

predictive support. function. The inferregp(x;t) decoded from the retrospective
The second type of support is retrospective, or diagnostiapetwork[Fig. 4(b)] captures both of the possible solutions—

support. In this case, information propagates against the diwith positive and negative values—in response to a unimo-

rections of the graph links, from effect to cause, or, equivadal PDFp(y;t).

lently, from evidence to hypothedid]. By specifyingp(y;t)

instead ofp(x;t), theX—Y inference network features only  p. Encoding Bayesian belief networks into neural networks

ret[j);[r)]zcttlr\]/g igﬁgr:ﬁinimal-space representafiags. (1) Following a strategy similar to that presented in Sec. Il B,

and (12)] as we adopted for the predictive network, we de-We can deveilop neural-network update rules from ark_)itrary
termine the update rule for the retrospective network. W >ayesian belief n_etworks - We assume f[h.at the BayeS|ar! be-
find ief network consists oR nodes, symbolizing random vari-

ablesX;,X,,X3, ..., Xgr. We focus on the marginal distri-
dA,(t) butions p(x; ;t) for the random variables as a function of
g _ _ 1
dat 77( % Bs(1)Qp, ; Aa(t)Yau) (24) time. The overall joint probability density is calculated as the
product of the marginal distributions, i.e., a so-called naive
with feedback weights estimate.
Introducing representations

Q =f f W (y) x)® ,(x)dxd (25 _ _
. AP GO0 pxi D=3 ADHOD(x) @7
and lateral weights .
for the marginal distributions in the minimal space, we define
(f p(y|x)<1>#(x)dx dy. auxiliary cost functions, analogous to that in Ef3), with
(26) the forms

Ya#:f UP(Y|X)<I>a(X)dX

2

While the_ feedback weight§) 5, of the r(_etrospective net- Ei:%j (p(Xi ;t)—f p[Xi|Np(Xi)]H p(X; ;t)dxj) dx

work are identical to the feedforward weights of the predic- J

tive network[Eg. (15)] in the minimal space, note that the

resulting neural-network weights in the explicit space need :—f

not be identical. The lateral weigh¥s,,, provide a measure 2

of the correlation between what the different basis functions

in the parent nodeX predict about the child nod¥; these —f p[xiIN,ODITT 2 AD (DD (x;)dx;

lateral connections act to ensure consistency between evi- I . !

dence and hypothesis. (28)
Although the networks driven by retrospective support are

closely related to the networks driven by predictive support]n Eq. (28), the index] for the product runs over the direct

their function is quite different. For example, consider a net-parents ofX; .

work with p(y|x)=48(y—|x|) as the underlying computa-  We further define an aggregate cost function

tion. In a predictive network, wherein we specyyx;t) and R

infer p(y;t), the absolute-value relationship is approximated EZE K,E;. (29)

in a straightforward fashiofFig. 4(a)]. Conversely, a retro- i=1

% AD DD (x)

2
dXi .
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The parameterK; can be used to emphasize particular por- 5 G b
tions of the network; except where otherwise noted, we as-
sume thatK;=1 for all i. Employing gradient descent to
minimize E, we find o e
dAl R OE
Gt G © (0 ©
Since A does not appear in all of the cost functions, (s) (%)

9E;1dA® is nonzero only foi =k and when the graph node
for X; is N.(X), the set of children of the graph node for ¢

d
Xy Thus,
1 dAl IEy E; : : :
- =K - Ki—. (31
7 dt oAt ie{i:xize:NC(Xk)} LoAR 3D

. FIG. 5. Tree-structured Bayesian belief networla@. In this
As was the case for the two-node inference network, th(?ree, nodeA is called the root, while nodds, F, G, andH are called

input PDF or PDFs will be Spec'_f'Ed by an encoding Processhe leaves. For trees, the direct parent of a node is called its father,

rather than 'an }deatg rule of this sort. . and its direct children are called its sons. Since each father has at
The derivatives in Eq.(31) are straightforward but st two sons, the tree shown here is a binary tigieA small tree.

lengthy to evaluate. The resulting general equati@o®-  any of the nodes in this tree can be specified as evidence. The two

sented in the Appendjxare lengthy and can sometimes be jeaf nodes could also provide evidence: both leaves can provide
awkward to use directly. For specific probabilistic models, itinformation to the root, but if the root and one of the leaves is

may be more convenient to write out the cost functions usingpecified, the other leaf will only be driven by the rdits Markov
Eq. (28) and directly evaluate the necessary derivativeslanke). (c) A treelike graph with the arrows reversed. Any two of

[specified by Eq(31)]. the nodes can be specified and its information will propagate
throughout the network. Unlike the case of the tree, the Markov
. APPLICATIONS OF NEURAL BELIEE NETWORKS blanket of any node is both of the other nodéd). Chains are
special cases of trees. This three-node chain can feature both pre-
A. Bidirectional propagation dictive and retrospective support.

So far, we have restricted our attention to developing neu- . _ ] ]
ral networks that encode simple probabilistic models involy-Provide evidence The root node is the single node which
ing only a single source of evidence. Given suitable reprelas no father and is located at the top of the tree, while the
sentations, we can design neural networks that capture |§af nodes are all the nodes which have no children. If an-
wide variety of probabilistic relation]. Further, by regard- other nodeX were externally specified, the subtree rooted at
ing representations of probabilistic dependence models & could be broken off and treated separately. Conversely, the
Bayesian belief networks, we have seen that two types of¢ther node ofX is unaffected by the descendantsXfso
information propagation come into play: predictive and ret-they could be deleted from the original tree, leavikgs a
rospective. leaf node. 3 _

In this section, we will examine several applications of ~Cléarly, an unspecified root node can only receive retro-
neural belief networks. Unlike those considered before, théPective support, while an unspecified leaf node can only
probabilistic models will now feature multiple sources of '€Ceive predictive support. All other unspecified nodes in the
evidence, with bidirectional propagation of both predictivetree Will receive both retrospective and predictive support.
and retrospective support. The corresponding neural nelVe will thus need to consider separately these three types of
works thus have neurons with both feedforward and feedhodes when determining the update rules for the neural net-

back connections, as well as lateral connections. work. - _ _ _
An unspecified root nod¥ with childrenY andZ receives

feedback inputgretrospective supportfrom both of them

- _ S _ _ ~ (Fig. 5. We introduce the representations
To facilitate investigation of information propagation in

neur_a! belief networks, we first focus on networks vyhose p(X;t)=E AL (DD (), (32)
implicit spaces are specified by tree-structured Bayesian be- @
lief networks[Fig. 5@)]. These implicit networks are general
enough to illustrate the concepts, while yielding neural net-
works that are readily understood. We will examine binary p(y;t) =2 Ba()W4(y), (33
trees, where each node has at most two children, but the b
results extend simply to more general tree structures.

We may assume that evidence is only available in the root p(z;t)= 2 C,(1)0(2). (34)
node and the leaf noddalthough all such nodes need not y

B. Neural propagation of evidence in trees
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Following the procedures described in Sec. Il D, the update 1dA, JE, JE, IE,
rule for the root is ;W——Kym—sz—me. (41
1dA JE JE
e = y_y —\z i y (35)
7 dt oA, TPIA, : N . N
The partial derivatives of the cost functions are identical to
with those evaluated for the root and leaf nodes. The descendants
I and ancestors of thus communicate, in the neural network,
y _ only through the intermediary of itself. This is consistent
— =2 A [ : i . .
A, Eal “(t)f (J p(yX) “(X)dx) with the tree structure of the underlying Bayesian belief net-

work; given X, the descendants of are conditionally inde-
dy pendent of the ancestors Xf[4].
With these update rules, evidence provided at the root
node or at leaf nodes will propagate throughout the network.
-> Bg(t)f f‘PB(y)p(Y|X)‘I’M(X)dXdy The manner in which evidence is specified will depend on
B how the probabilistic model is posed. Therefore, the same
(36) graph could have different nodes specified for different pur-
poses. For instance, the small tree in Fig)5could have
and any of its nodes represent sensory inputs.
If we specify the PDF for the root node, the leaf nodes
IE, 22 A (t)f (f p(Z]X)® (x)dx and Z will receive predictive support fronX. By selecting
oA, T “ appropriate representations for the PDFs and for the condi-
tional probabilities associated with the links, the resulting
><( f p(Z|x)® (x)dx)dz neural network could subdivide a complex, highly general
" sensory input into simpler, more specialized components. For
example, a visual input at a particular retinal location might
> cy(t)f f 0 (2)p(z|x)® ,(x)dxdz be separated into contrast and color.
Y Conversely, if we specify PDFs for the leaf nodes, the
(37) root nodeX will receive retrospective support fromandZ.
Amongst other possibilities, this provides a simple way to
Thus, the firing rates for the root node are driven by a sum ofmodel redundant sensory inputs. If we take the conditional
feedback inputs that individually are identical to the inputprobabiliies to be of narrow Gaussian fornp(y|x)
produced by a single source of retrospective supf®et. IN(y;X,a'i) and p(z|x):N(z;x,g§), then the firing rates
Il C). The parameter, andK, need not be the same; dif- representing(x;t) will be updated so as to pool the diag-
ferent values may be used to give greater significance to ongostic information from both the sensory inpu¥sandZ.
of the inputs. Similar arguments apply to larger trees. Additionally,
The firing rates for an unspecified leaf node are also uptarger trees may well have the root node and leaf nodes
dated by a familiar rule. Consider a leaf nodewith father  specified simultaneouslywhich is not of interest for the

><( f p(Y[X) @, (x)dx

U. Using Eq.(32) and small tree discussed abgv&hese nodes may correspond to
sensory inputs, or can represent priors that are built into the
p(uit)=>, Ds(t)Asu), (38)  neural network.
S5

It is important to recognize that the neural update rules
developed above apply only to the binary trees. If the arrows

we obtain the update rule in the binary tree graphs are reversed, rather different update

1dA, IE, rules are produced. For example, the directions of the small
;W:_KXKa (39  tree shown in Fig. ) can be reversed, as shown in Fig.
" 5(c). SpecifyingY andZ yields the multiplicative update rule
where
JE, A Sb f J’ A ® dud 1 dA,(t)
(40)
This update rule is of course identical to the update rule for —Aa(t)+% Ba(t)Cy(1)

the X—Y network with predictive suppofiSec. Il B).
All nonroot, nonleaf nodes have similar update rules. For
a nodeX with father U and sonsY and Z, we impose the Xj f f @, (x)p(x]y,2)V4(y)0O ,(z)dxdydz (42)
representations given above in E¢32)—(34) and(38). Ap-
plying the procedure of Sec. Il D yields an update rule with
form while specifyingX andZ yields
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FIG. 6. A neural belief network can estimate the velocity of a moving tafgeThe position of the target is copied into two different
populations of neurons, with different time delays) The time delay and the difference of the two copies of position are used to estimate
the velocity. The results shown here were obtained with the PDFs for each of the random variables represented using minimal spaces spannec
by two straight-line basis functions.

1 dB,(t) the mean value of the random variable (Fig. 6). This
dt choice presents a difficulty for ambiguous cases, e.g., a mul-
timodal PDFp(x;t), where the mean can be a poor match to
any of the possible velocities. One approach to eliminating
—;y Aa(t)Cy(t)f f J‘DQ(X)P(XWvZ)‘l’v(y) problems caused by ambiguous inputs is to utilize a low-
dimensional representation where the mean is well repre-
sented but multimodal distributions are excluded; the veloc-

7Ky

X0 (z)dxdydz- > By(t)C, (1)C, (1)

B.Y1.72 ity estimates in Fig. 6 were produced using such a
representatiofdiscussed at length in Rg¢2]). Alternatively,
Xf (f f p(x|y,z)\I'B(y)®yl(z)dydz) thel velocity COL_JId be determined in a different fashjerg.,
taking the maximum value qf(v;t)], or the network could

be implemented to directly handle ambiguous cdses the
X( f f p(x|y,z)\lfv(y)®yz(z)dydz)}dx. (43)  following section.
C. Top-down feedback from a high-level model

This latter update rule features a feedforward term that is In Sec. 1l B, we examined the neural update rules for
multilinear in the parameterfA,(t)} and{C,(t)}. It also  Bayesian belief networks having binary-tree structure. By
features a nonlinear lateral combination of the parameterdoing so, we examined the means by which information
{Bg(t)}, and{C(t)} which serves to ensure that the two propagates throughout the network from one or more
parent node¥ andZ are mutually consistent with the PDF of sources. In particular, we saw that conditional independence
the child nodeX. If only X is specified, there will be an in the Bayesian belief network was preserved in the neural-
additional update rule for the parameté@,(t)}, which is  network connectivity.
similar in form to Eq.(43). We now turn from the general rules by which probabilistic
Although the update rules are more complicated with thenformation propagates in the neural network and investigate
directions reversed in this manner, the probabilistic modeln more detail the effects that multiple sources of evidence
may demand it. For instance, the Bayesian belief network ithave on the encoded PDFs. We consider PDFs encoded by
Fig. 5(c) is appropriate for implementing the arithmetic op- chains of nodes with evidence provided at one or both ends.
erations(add, subtract, multiply, and divigle (Specifying the PDF for any other node breaks the chain into
An interesting application of these two types of neuraltwo chains that can be treated independentlychain is a
belief networks(tree and reversed treés the estimation of special case of a tree, so the neural update rules can be ob-
the velocity of a moving object. A small tré€ig. 5b)] can  tained as in Sec. Il B.
generate two copieg andZ of the input positionX by taking We have already studied at some depth the behavior of
the conditional probabilities to be Dirag functions §(y chains consisting of two noddSecs. Il B and Il §. These
—x) and 6(z—x). We can set the parametdfs so that the chains are able to transmit probabilistic information from
values of the copies will be held for different lengths of time. one node of the graph to another, with the accuracy limited
In particular, we can establish the relatiopgy;t) =p(x;t by the representations adopted. Even a relatively small num-
—17) and p(z;t)=p(x;t—27). These copies of the position ber of neurons can produce networks of suitable quédity.,
can then be used as the inputs to a second Bayesian beligfe networks implementing the absolute value function in
network , of the type shown in Fig.(®. By setting Fig. 4).

p(v]y,z)=68[v—(y—2)/7] in this second network, the ran- Every chain with three or more nodes will admit both
dom variableV becomes an estimate of the velocity at time predictive and retrospective support. The behavior of all such
t—7. chains is well characterized by a chain with three nodes: the

However, there is not a unique way to extract the velocityupdate rule for any node depends only on the neighboring
from the network. We have chosen to obtain the velocity asiodes, so a chain with three nodgsg. 5d)] covers all
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FIG. 7. Propagation of evidence in chain-structured neural belief netw@kdMultiple sources of evidence can help to resolve
ambiguous information. Here, the inferior mode of a bimodal, bottom-up ipput) is damped by a more specific top-down sigpét;t).
(b) A high-level model can be dynamically generated in a neural belief network with a populatanwinner-take-all neurons. An
ambiguous input signal atis propagated to the winner-take-all neurons throMghhe winner-take-all neurons only respond to the stronger
mode of the bimodal input, which damps the inferior mode(w;t).

possibilities(only predictive support, only retrospective sup- simply to employ PDFs as descriptions of analog variables.
port, and both predictive and retrospective suppdid keep To do this, we adopt an approach that illustrates the first
the focus on the interaction of multiple sources of evidencesteps towards implementing decision thepiyl] in neural
we take the conditional probabilities to be the Di&éunc-  networks. Conceptually, we introduce a set of model PDFs,
tions p(y|x)=8(y—x) andp(z|ly)=8(z—y) and use identi- and requirep(z;t) to be the PDF from this set that is the
cal parameter, andK,. We utilize the Gaussian represen- closest match tep(y;t). For the present example, we take
tation introduced in Sec. | C the model PDFs to have Gaussian forms, similar to those in
The first possibility is just to add the third node without Fig. 2(a), but suitably normalized.
adding any additional evidence to the network. We decode The model PDFs are translated into the explicit-space
p(y;t) andp(z;t) from neural firing rates determined using neural network by taking the neurons representifigt) to
update rules derived previously for more general trees. Fase winner-take-all units. Only one of these neurons will be
identical inputs in the two-node and three-node networks, thective at a time, based on a simple utility function: the neu-
steady state behavior p{y;t) is unchanged by the addition rons compete to be active, and the single neuron that is most
of the retrospective support from the third node, and thestrongly driven will be the one that is activated. The manner
structure ofp(z;t) is identical to that ofp(y;t). of implementation of the winner-take-all units is immaterial,
Since the same evidence is presented to the network, tred we directly choose the most strongly driven neuron in the
introduction of a third node does not change the behavior ofomputer simulations(lt is possible to implement a set of
the original nodes. This is entirely appropriate, given thewinner-take-all units in a real network through a suitable
probabilistic foundations of the neural belief networks. How-choice of nonlinear activation function and lateral weights.
ever, it is feasible that, by adjusting thg parameters or the One may, e.g., let each neuron inhibit the others and have a
PDFs representable by the minimal spaces, there can besalf-excitatory connectiofil5].)
change in the dynamics of neural networks extended in this The decoding functions used earlier are no longer well
fashion. For example, appropriate parameter choice coulduited forZ. They were optimized to collectively represent
produce a slowly varying PDF i, which is relatively stable general PDFs, but individually they work poorly to represent
against noise, thus stabilizing a more rapidly varying PDRhe model PDFs. However, it is clear that, for the winner-
inY. take-all neurons we have introduced, the appropriate decod-
A more proactive role that the third nodecan play is as ers are directly proportional to the model PDFs themselves.
an additional source of evidence. We directly spegify;t) This leads to minor alterations in the weights of the neural
and encode it into the neural network. The neural firing ratesietwork in the explicit space.
for Y are driven by predictive support frod and retrospec- Since only the most strongly driven winner-take-all neu-
tive support fromZ, and then decoded to fine(y;t). One  ron is activated, this strategy provides us with a way to gen-
possible use of this second source of evidence is to resolverate a high-level model that selects the dominant mode of a
an ambiguous input: the inferior mode of a bimodal predic-multimodal input distribution. We allow to be driven by the
tive input can be deemphasized using more specific retropredictive support fron¥, and the winner-take-all nature of
spective evidencgFig. 7(a)]. the Z neurons permits only narrow Gaussian PDFs to be
Although this use of the retrospective evidence resolvesepresented. Thup(z;t) serves as our high-level model, and
the ambiguous predictive input, it does not explain how thecan resolve ambiguous inputs, as demonstrated in Fig. 7
retrospective evidence comes about. Ideally, we would likeThis type of neural network could be used as the starting
to build up a high-level model of the predictive input, and point for coherent theoretical accounts of attentive effects in
use the model to generate a top-down signal that imposeke primate visual system, of the electrosensory system of
global regularity on the bottom-up predictive input. This re-weakly electric fish, and of other neural systems where an
quires an extension of the probabilistic framework to allowinternal model is built up to impose global constraints on
one to assess the quality of a PDF as a model, rather thareural representations of information.
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IV. CONCLUSIONS 9900713, and PHY-014031L6the DFG of GermanyGra-

We have extended the hypothesis that neural networkg,u'ertenkOlleg Azentr.|sche.KL|staIIe, GK5pgand the FCT
represent information as probability density functions. Thes f PortugaI(BoIsg de Investigan do CCM and SFRH/BPD./
PDFs are assumed to be obtainable by a linear combinatio +17/2002. Portions of thls.vyork were undertaken while
of some implicit decoding functions, with the decoder for M-J-B. and J.W.C. were participants in the Research Year on
each neuron being weighted by its firing rate. The firing rates The Sciences of Complexity: From Mathematics to Tech-
in turn are obtainable from the PDF using a complementary?0logy to a Sustainable World" at the Zentrunt faterdis-
set of encoding functions. ziplinare Forschung, University of Bielefeld. J.W.C. also ac-

Success in representing an individual PDF with a populaknowledges support received from the Furaad uso-
tion of neurong2] has led us to inquire whether more com- Americana para o Desenvolvimen(SLAD) and from the
plex probabilistic models can be represented and impleFundaeo para a Ciacia e a Technologig=CT) for his par-
mented in neural terms. To this end, we have adopteticipation in Madeira Math Encounters XXIII at the Univer-
graphical representations of probabilistic dependence modity of Madeira, where the work was concluded.
els, in the form of Pearl’s Bayesian belief networks, to orga-
nize and simplify the relations between the random variables
in such a model.

The resulting neural belief networks share properties with
both neural-network models and Bayesian belief networks.
In particular, multiple sources of evidence are consistently 1 dAf,k) ) i) e (0
pooled based on local update rules, providing a distributed ; dt =—Ky Ay _H ; Avj QUV1V2~~~VJ-
version of a probabilistic model. A number of interesting Lo
applications of neural belief networks are possible, including _ o
velocity estimation and the disambiguation of low-level in- +2 K>, AS)H > AS,J.)QS'%VZ...,,. -
puts using feedback from a high-level model. : m iFkow Jmax

A possible shortcoming of the class of networks explored _ ,
here is that the dynamics depend upon multiplicative re- > kIT 1T > A(V',)E Afj,,)
sponses Egs. (42), (43) and (A1)]. Multiplication of the i ek e !
minimal-space coefficients becomes multiplication of neural )
firing rates in the explicit space. Neurons with multiplicative Xlevz-nvjmaX/Lle“-/Ljf o (A1)
responses are computationally powerful, but single-neuron e
mechanisms for neuronal multiplication have proven elusive,
Salinas and Abbott have shown that populations of neuron?
can collectively produce multiplicative effedt§6], but it is
not clear that the precise and complex multiplication needed, (« - K -
can be implemented in this way. It may be necessary to gen- EfBle-“vjmax_f (I)Ef)(xk)’)[kap(xk)]n cD(vjj)(xj)dxjdxk
eralize the simple encoding rul&q. (4)] to a more sophis- (A2)
ticated form that produces neural networks with less depen-
dence on multiplicative interactions.

In summary, we have introduced, analyzed, and applied QSI;)V L ":f CDEP(Xi)p[XiINp(Xi)]d)f,k)(Xk)
three ways to represent probabilistic information. These are 17277 Timax
the implicit model, depicted as a Bayesian belief network; _
the representation of the probabilistic model in the minimal [T @D (x)dxdxdx, (A3)
space; and the representation of the probabilistic model as a 7k
neural network in the explicit space. Further, we have de-
vised rules that permit us to convert one type of representaand
tion into another type. This formalization of the representa-

APPENDIX: GENERAL EQUATIONS FOR NEURAL
BELIEF NETWORKS

max

here we have defined

tion and processing of information in neurobiological y i’k
computation therefore suggests a general protocol by which LR Pk L A 1
probabilistic models can be embedded in neural networks.
First, we specify the probabilistic model, using a Bayesian :f f q’frk)(xk)P[XﬂN—p(Xi)]
belief network to organize the random variables. We then
consider what types of functions are exemplars of the PDFs
des_crlbmg thg _random varlab_les and use _t_hese exemp!ars to % H CDEJ.,)(X,-r)derkaf p[Xi|Np(x))]
define the minimal space. Finally, we utilize the relations ik
between the minimal space and the explicit space to generate
the neural network itself. XH CD(VJJ.)(Xj)de)dXi _ (A4)
i
ACKNOWLEDGMENTS

This research was supported by the National Scienc&he sums over the indexin Eq. (A1) run over the children
Foundation(Grant Nos. IBN-9634314, PHY-9602127, PHY- of X,. The products are over the parents of either n¥ge

041912-10



GENERATING NEURAL CIRCUITS THAT IMPLEMENT . . . PHYSICAL REVIEW E 68, 041912 (2003

[Eq. (A2), first term in Eq.(A1)] or nodeX; [Egs.(A3) and  direct parents, its direct descendents, and the direct parents
(A4), second and third terms in EGA1)], possibly exclud- of its direct descendents, so thdf is separated from all

ing nodeX, itself. From these equations, it can be seen thabther nodes in the neural belief networks by an appropriate
the PDF represented at a nodeis updated based only on its Markov blanket.
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